
The SkunkWeb Developers Guide
Release 3.3

Drew Csillag and Jacob Smullyan

January 29, 2007

This file documents the SkunkWeb Web Application Framework.

Copyright (C) 2002 Andrew T. Csillag, Jacob Smullyan

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this
permission notice are preserved on all copies.

ii

CONTENTS

1 Introduction 1

2 Services 3
2.1 Provider Services . 3
2.2 Linkage Services . 3
2.3 API Services . 4
2.4 Foundation Services . 8

3 Templating Languages 11
3.1 Common to All . 11
3.2 PSP Specifics . 11
3.3 Cheetah Specifics . 11

4 Writing a Service 13

5 Writing a New STML Tag 15

6 Adding a Templating Type 17

A The AE Package 19
A.1 Components . 19
A.2 Caching . 20
A.3 Misc Functions . 21
A.4 File Formats . 21

B Database APIs 23

Index 25

iii

iv

CHAPTER

ONE

Introduction

This document is intended for the SkunkWeb developer that needs to get more into the inner guts of the SkunkWeb
server. This document will describe the inner architecture of the server, the file formats used, the core APIs, the APIs
of foundation services, as well as how to write SkunkWeb services.

It is assumed that you are familliar with the SkunkWeb server, i.e. you don’t need to be told that what <:component
foo.comp:> would do, and that you know Python well.

1

2

CHAPTER

TWO

Services

The crux of most of what SkunkWeb does lies in services, of which there are four kinds.

Provider Provides direct functionality, but few, if any API functions.

Linkage Mainly links in some external (from pylibs) code, and may provide functionality of it’s own.

API Provides little, if any functionality on it’s own, but provides API functions to do various things.

Foundation Services that form the foundation that services of other types are built upon.

2.1 Provider Services

Many of the provider services are protocol adaptors, those being the aecgi, fcgiprot, scgi, httpd and
remote, whose purpose is merely to provide support for a network protocol.

There are others in this category. These are the services that provide direct functionality and really don’t have any API
to speak of.

The basicauth service, while deprecated, provides the ability to do basicauth (i.e. browser-based) authentica-
tion. It has an API inasmuch setting of the REMOTE USER and REMOTE PASSWORD is an API. The newer auth
service provides the functionality that the basicauth service provides and more and is the replacement now that
basicauth is deprecated.

The rewrite service allows for some pre-request URL rewriting. In addition, named groups in the matched regular
expression will be added to CONNECTION.args if the appropriate configuration variable is set. See the SkunkWeb
Operations Manual for details.

The userdir service allows you to provide simple SkunkWeb services to the users on your machine. If the URL
starts with ˜username, it will serve the pages from the directory named by the userDirPath configuration variable
(public html by default) in their home directory.

The extcgi service allows SkunkWeb to directly handle CGI programs. This is useful in the event that you either
aren’t running Apache (or some other SkunkWeb compatible server), or that your configuration is such that having
your main HTTP server handle it is either not aesthetically pleasing or just plain annoying.

The pycgi service also allows SkunkWeb to directly handle CGI programs, but pycgi only works for CGI programs
that are Python scripts. It handles them in such a way that, unlike extcgi, does not require a call to fork, so should
provide better performance in the case that you are running a Python CGI program.

2.2 Linkage Services

Linkage services mainly exist to link other stuff into skunkweb.

3

mysql Loads the MySQL pylib library to do connection caching. See Appendix B.

postgresql Loads the PostgreSql pylib library to do connection caching. See Appendix B.

oracle Loads the Oracle pylib library to do connection caching. See Appendix B.

ae component Loads the AE pylib library that is the component rendering infrastructure, see Appendix A.

templating Hooks up the ae component service up to the web service to make templates web accessible.

psptemplate Hooks up the psp pylib to the AE infrastructure.

2.3 API Services

The API services are those that could not (easily) be arranged to otherwise be linkage services, as they are more tightly
integrated because of the tasks they perform, and they provide some direct functionality also.

auth product remote client sessionHandler

4 Chapter 2. Services

2.3.1 The auth Service

class authorizer:
def __init__(self,):
"""
The will be filled with the contents of
Configuration.authAuthorizerCtorArgs when this object is instantiated.
"""

def checkCredentials(self, conn):
"""
Examine the connection however you see fit to see if the
connection has the credentials needed to view the page
return true to accept, false to reject
"""

def login(self, conn, username, password):
"""
Take the username and password, validate them, and if they are
valid, give the connection credentials to validate them in the
future (i.e. make it so checkCredentials() returns true). If your
authorizer is doing basicauth-style authentication, this method is
not required.
"""

def logout(self, conn):
"""
Remove any credentials from the browser. This method is not required
for methods (specifically, basicauth) that do not have the concept of
logging out.
"""

def authFailed(self, conn):
"""
If the connections credentials are rejected, what to do. For
this, unless you are using a basic-auth means, inheriting from
RespAuthBase is probably sufficient (it will bring up a login
page), otherwise inheriting from BasicAuthBase and providing an
appropriate validate function is sufficient.
"""

#this method is required only if using one of the base classes that
#require it
def validate(self, username, password):
"""
Return true if the username/password combo is valid, false otherwise
"""

2.3. API Services 5

class RespAuthBase:
"""
This is a base class for those authorizers that need to use a login page.
That’s pretty much any of them, with the exception of BasicAuth, as it
doesn’t need it since the browser "puts up a login page".

The loginPage ctor arg is the page to show. It *can* be in the protected
area.
"""

class AuthFileBase: #base class for those that auth against a basicauth file
"""
Base class for authorizers that will use a simple basicauth file to
validate user/password combinations

The authFile ctor argument is the file that we will validate against
"""

class BasicAuthBase: #base class that does basicauth
"""
This class does browser based basicauth authentication where it pops up
the login box by itself.

This is a mixin class and is not usable by itself. You must provide a
way to validate (by subclassing BasicAuthBase and defining a validate
function) the username and password that is obtained."""

class CookieAuthBase: #class that does basic cookie authentication
"""
This class implements a simple cookie based authentication. Depending
on how you want to do things, you may not (and probably don’t) want to
have the username and password encoded directly in the cookie, but
definitely *do* use the armor module to protect whatever you do decide to
put into the cookie as it will make them virtually tamperproof.

As with BasicAuthBase, thisis a mixin class and is not usable by
itself. You must provide a way to validate (by subclassing CookieAuthBase
and defining a function) the username and password that is obtained.
"""

6 Chapter 2. Services

class SessionAuthBase: #class to do auth using sessions
"""
This class uses the session object (you must have the sessionHandler
service loaded) to handle authentication. This is also probably not
something that you would really want to use in a production setup as:
a) you probably don’t want to store the password in the session. Not that

it’s inherently evil, but it’s one less thing you have to worry about
leaking in the event that something gets screwed up.

b) checking the credentials might just be to check if the username is set
since all of the session info (minus the session key) is stored on
the server and not the browser, we don’t have to worry as much that
somebody fooled around with us

But what is here is usable as a starting point and will run.

As with BasicAuthBase, thisis a mixin class and is not usable by
itself. You must provide a way to validate (by subclassing SessionAuthBase
and defining a function) the username and password that is obtained.

"""

2.3.2 The product Service

The product service is a service to support SkunkWeb products, which can be installed as archive files (zip, tar, or
tgz), or as directories in the SkunkWeb product directory. This service requires that the documentRootFS be a MultiFS
(at least prior to scoping); the assumption is that MultiFS will become the default fs.

The product loader is configured to load by default all product archives in the product directory, but can be configured
to load any arbitrary subset.

The loader opens the MANIFEST file in each archive, looks for dependencies stated therein, and loads any products
therein listed, raising an error for circular or missing dependencies. For each load, it adds mount points to the MultiFS
for the docroot and, by means of an import hook in the vfs which permits python modules to be imported from the vfs,
adds the libs (if any) to sys.path. Services specified in the MANIFEST are then imported.

The MANIFEST is essentially an init file for the product which integrates it into the SkunkWeb framework. It
must contain the product version, and can also contain product dependencies and services (python modules that use
SkunkWeb hooks, to be imported at product load time). See manifest.py for details.

By default, a product’s docroot will be mounted at products/¡product-name¿, relative to the SkunkWeb documentRoot.
This can be altered by modifying Configuration.defaultProductPath, which will affect all products, or by adding the
product-name to the Configuration.productPaths mapping.

This service will also contain a utility for creating products, creating the MANIFEST file, byte-compiling the python
modules, and creating the archive file.

2.3.3 The remote client Service

The remote client service exists to provide access to components exposed on other SkunkWeb servers via the
AE.Component.callComponent function, and by extension the <:component:> tag. What this service does
is make it so that if you specify the component name as swrc://host:port/path/to/component.comp, it will call
the component /path/to/component.comp by contacting a (presumably) existing SkunkWeb installation that has the
remote service configured to listen on host:port.

2.3. API Services 7

2.3.4 The sessionHandler Service

The sessionHandler service adds three functions to the CONNECTION object that the top-level component sees.

The three functions are:

getSession(create=0, **cookieParams) if create is true, will create (and return) a new session (in the
cookie, with extra paraters in cookieParams), otherwise will return an existing session, if it exists, otherwise
returns None.

getSessionID(create=1) get session id from cookie, or create it if create is true, otherwise returns
None.

removeSession() kills the session cookie.

2.4 Foundation Services

Foundation services are those which are used to build other services, but in and of themselves, provide no directly
useable functionality.

2.4.1 The requestHandler Service

The requestHandler service is used as the basis of all of the network request based services (directly, or indirectly)
and handles the communication to the client (in whatever form that may take).

PreemptiveResponse (responseData) – respdata will be sent via protocol.marshalResponse

from requestHandler/requestHandler.py Hook sequences

BeginSession Just after connection is gotten, scoped for IP,PORT or UNIXPATH (job, sock, sessionDict)

while 1: InitRequest after the request data has been received (job, reqdata, sessiondict) HandleRequest called to
actually handle the request (job, reqdata, sessiondict) PostRequest called after response sent (job, reqdata, sessionDict)
CleanupRequest right after PostRequest (job, reqdata, sessionDict)

EndSession called when session ends.

has DocumentTimeout stuff

requestHandler.requestHandler.addRequestHandler(handler – should be subclass (or provide the same interface as)
requestHandler.protocol.Protocol, ports)

requestHandler.protocol.Protocol

8 Chapter 2. Services

class Protocol:
"""
abstract class for protocols used in handling request and response
"""

def marshalRequest(self, socket, sessionDict):
’’’
should return the marshalled request data
’’’
raise NotImplementedError

def marshalResponse(self, response, sessionDict):
’’’
should return response data
’’’
raise NotImplementedError

def marshalException(self, exc_text, sessionDict):
’’’
should return response data appropriate for the current exception.
’’’
raise NotImplementedError

def keepAliveTimeout(self, sessionDict):
’’’
how long to keep alive a session. A negative number will terminate the
session.
’’’
return -1

2.4.2 The web Service

from web/protocol.py

–CONNECTION object is constructed from reqHandler.reqdata HaveConnection (job, conn, sessionDict) –
Configuration is scoped PreHandleConnection (job, conn, sessionDict) HandleConnection (job, conn, session)

has Redirect exception

Contains the CONNECTION definition

2.4. Foundation Services 9

10

CHAPTER

THREE

Templating Languages

STML SkunkWeb Template Markup Language

PSP Python Server Pages

Cheetah The Cheetah templating system (http://www.cheetahtemplate.org)

Python Not really a templating language, but included for completeness

3.1 Common to All

CONNECTION exists in all of them (in toplevel) in the global namespace. URL (GET and POST) arguments show up
in CONNECTION.args. Can import SkunkWeb API modules (might be services). Can be components (regular and
data), cacheable, etc. Component args show up in global namespace.

3.2 PSP Specifics

Only � % and % � for now, no � %= % � pairs ... yet? No other PSP-style tags either.

3.3 Cheetah Specifics

Precompiled Cheetah templates are executed via the normal Python code execution path. Direct support for Cheetah
templates without compilation (i.e. being able to go to http://foo.bar/a cheetah doc.tmpl) is nonpresent in SkunkWeb
right now, but if there is demand, it could, of course, be added.

For Cheetah templates, $varwon’t fetch item from global namespace by default, so put this at the top of your Cheetah
templates and you’ll be good to go.

#silent self._searchList.append(globals())

Caching in Cheetah templates probably doesn’t work in SkunkWeb, or if it does, is not as effective as SkunkWeb
caching because SkunkWeb does not use threads. If SkunkWeb did use threads, then they would be equally effective
in a single-machine environment. In a multi-machine environment, SkunkWeb caching is more effective because the
cache can be shared between the machines as it is disk-based.

11

12

CHAPTER

FOUR

Writing a Service

Hooks reload gotchas

13

14

CHAPTER

FIVE

Writing a New STML Tag

empty tags block tags debugging and vicache.py metadata

15

16

CHAPTER

SIX

Adding a Templating Type

1. templating compiler (preferably) or interpreter

2. cached compiled vsn fetcher, or interpretable form instantiator

3. AE Executable

4. mime.types entries

5. adding applicable mime types to AE.Executables.executableByTypes, perhaps overriding those for text/html
and text/plain

6. add to interpretMimeTypes somehow

17

18

APPENDIX

A

The AE Package

Mention configuration if used outside of SkunkWeb, specifically that the default paths are different (since there is no
SkunkRoot)

A.1 Components

A.1.1 callComponent

callComponent(name, argDict, cache = 0, defer = None, compType = DT REGULAR, srcModTime = None)
Return the output of calling a component.

name The path to the component.

argDict A dictionary of arguments to the component.

cache A boolean specifying that we should attempt to get the output from cache, and failing that, execute it
and write the output to cache.

defer A boolean specifying that

1.If a recently expired cached version of the component exists give me that for now, and
2.Evaluate the component after the response has been sent and write it to cache.

Obviously, deferral only applies if the cache argument is true.

compType Either DT REGULAR meaning a regular textual component, DT INCLUDE meaning a textual
component that runs in the namespace of the calling component, or DT DATA for a data component. The
DT contants are in the AE.Component module.

srcModTime Modification time of the component source, if known.

A.1.2 The Component Stack

componentStack
A list used as the component stack (componentStack[0] being the bottom of the stack).

topOfComponentStack
The current top of the component stack. You should use componentStack[topOfComponentStack]
as the top of the stack, not componentStack[-1], since if an exception has occurred,
componentStack[-1] will point to the stack frame where the exception occurred, and in the case where
the exception was handled, the stack may not have been cleaned up yet

resetComponentStack()
Should be called after the top level call to callComponent has returned. It clears out the component stack.

Attributes of the ComponentStackFrame

19

name
The name of the component being executed.

namespace
The namespace dictionary that the component is being executed in.

executable
The execution object of the component (from AE.Executables).

argDict
The explict arguments passed to the component.

auxArgs
The auto-arguments passed to the component.

compType
The kind of component this is (data or textual). See Section A.1.1, page 19.

A.2 Caching

Compiled Memory Caching

A.2.1 Filesystem Interface

statDocRoot(path)
If talking to a normal filesystem, this would return os.stat(path).

getDocRootModTime(path)
If talking to a normal filesystem, this would return os.stat(path)[stat.ST_MTIME].

readDocRoot(path)
If talking to a normal filesystem, this would return open(path).read().

A.2.2 The Compile Cache

getCompiledThing(name, srcModTime, legend, compileFunc, version, reconstituteFunc = None, unconstituteFunc = None)
A generic way to get and cache compiled things from cache/disk/memory, returns the compiled thing.

compileFunc takes the name and the source and returns compiled form

unconstituteFunc takes the object and produces a marshal-friendly form

reconstituteFunc takes the unmarshalled form and reconstitutes into the object

name is the documentRoot relative path to the thing

srcModTime the modification time of the source, if known, if not known, say None.

legend the label to use in debug messages

version marhallable thing that if the one in the compile cache doesn’t match, we recompile

A.2.3 The Component Cache

getCachedComponent(name, argDict, auxArgs, srcModTime = None)
returns cached component (or None), source Mod time

name Name under which the cached output is stored.

20 Appendix A. The AE Package

argDict Dictionary of explicit component arguments.

auxArgs Dictionary of automatic component arguments.

srcModTime Generally, modification time of source.

putCachedComponent(name, argDict, auxArgs, out, cache exp time)
Puts the cached form of a component’s output to storage.

name Name under which the cached output is stored.

argDict Dictionary of component arguments.

auxArgs Dictionary of automatic component arguments.

out The output of the component.

cache exp time The number of seconds past the epoch when the cached version will expire.

clearCache(name, arguments, matchExact = None)
Selectively removes cached components from cache.

name Name of the component you want to clear.

arguments Argument dictionary to match.

matchExact If true, will clear only if the argument dictionary supplied matches the argument dictionary used
to store the component exactly, otherwise, any cached version whose argument dictionary is a superset of
arguments will be cleared.

A.3 Misc Functions

AE.Component.rectifyRelativeName(path)
Will return the full path of path as taken as relative to the directory of the currently executing component. For
example: if the currently executing component is /foo/bar/baz.comp calling

AE.Component.rectifyRelativeName(’.’)

will return /foo/bar/ and

AE.Component.rectifyRelativeName(’doofus’)

will return /foo/bar/doofus and

AE.Component.rectifyRelativeName(’/absolute/path’)

will return /absolute/path.

A.4 File Formats

Serialized tuple of (item, version). Cached compiled objs use the marshal module for serialization and cached
component outputs use cPickle for serialization.

A.4.1 Compiled Templates

item is tuple of (filename, python source text, python code object, metadata)

A.3. Misc Functions 21

A.4.2 Compiled Message Catalogs

item is tuple of (message dict, source file name)

A.4.3 Compiled Python Code

item is tuple of (python code object, python source text)

A.4.4 Cached components

Generation of md5 hash (see cachekey.c).

describe file layout and MD5 hash stuff path to src/firstbyte/secondbyte/fullhash.(cache—key)

item is dict of

exp time Seconds past the epoch at which this cached representation expires.

defer time when using deferred rendering, the expired component’s lifetime is temporarily extended so that it
gives the process time to render it and write it back to the cache. When this is the case, this is the time at which
it expires again, otherwise -1.

output Serialized form of component output.

full key Serialized form of full cache key.

A.4.5 Component Cache Distribution

Take last 16 bits of md5 hash and mod numServers. Insert # between component cache root and normal path to cache.
If access to server fails abnormally, don’t try it again for failoverRetry seconds, and use failoverComponentCacheRoot
in meantime for only the section(s) of the component cache that failed recently.

22 Appendix A. The AE Package

APPENDIX

B

Database APIs

The mysql, oracle and postgresql services exist to merely import their pylib counterparts (MySQL, Oracle
and PostgreSql respectively). The services themselves provide no api, they just provide configuration options to
setup the connection caches that the pylib modules hold.

The APIs to the modules are essentially identical. There is really only one function of interest (though some contain
other function which you should NOT rely on to exist in future releases), and that is getConnection. This function
takes a connection name (as defined in the sw.conf file) and returns the connection associated with it. The con-
nections are lazily made, i.e. they are not created when the SkunkWeb child process starts, but when the first call of
getConnection with the connection name is made in a process.

Here’s an example of typical usage using PostgreSQL:

import PostgreSql
db = PostgreSql.getConnection(’test’) # <--- as defined in sw.conf
cur = db.cursor()
cur.execute(’select * from testTable’)
result=cur.fetchall()
cur.close()

23

24

INDEX

Symbols
getCompiledThing(), 20
getDocRootModTime(), 20
readDocRoot(), 20
statDocRoot(), 20

ae component, 4
aecgi, 3
auth, 3, 5
basicauth, 3
extcgi, 3
fcgiprot, 3
httpd, 3
mysql, 23
oracle, 23
postgresql, 23
product, 7
pycgi, 3
remote client, 7
remote, 3, 7
requestHandler, 8
rewrite, 3
scgi, 3
sessionHandler, 8
userdir, 3
web, 4, 9
CONNECTION, 8
REMOTE PASSWORD, 3
REMOTE USER, 3

A
AE.Component.rectifyRelativeName(), 21
argDict, 20
auxArgs, 20

C
callComponent(), 19
clearCache(), 21
componentStack, 19
compType, 20

E
executable, 20

G
getCachedComponent(), 20

M
MySQL, 4

N
name, 20
namespace, 20

O
Oracle, 4

P
PostgreSQL, 4
putCachedComponent(), 21

R
resetComponentStack(), 19

T
topOfComponentStack, 19

25

