
PyDO — Python Data Objects
Release 1.0

Drew Csillag

January 29, 2007

Copyright (C) 2001 Andrew Csillag

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this
permission notice are preserved on all copies.

ii

CONTENTS

1 What is it? 1

2 How to Define a Data Class 3
2.1 Methods . 3
2.2 Inheritance . 4

3 The Details 5
3.1 Connect Strings . 5
3.2 Inheritance . 5
3.3 Data Class Details . 6

4 The Big Example 11
4.1 Using This New Data Class . 13
4.2 Mutating Data Class Instances . 13
4.3 Defining Instance Methods . 14
4.4 Defining Static Methods . 15
4.5 Relations and PyDO . 15
4.6 Refreshing an Object . 16
4.7 Deleting An object . 17
4.8 Committing and Rollback . 17

5 Operators 19

6 The *Genscripts 21

7 Adding Support for Another Database 23

iii

iv

CHAPTER

ONE

What is it?

In short, PyDO allows you to simplify access to databases in a comprehensible way. Ok, now for a bit more detail.
SDS, PyDO’s predecessor made data modelling and access considerably easier than doing the table design, SQL
writing et. al. than doing it yourself. The main problem was is that the database people had a hard time understanding
what it actually did under the hood, because, for them (and rightly so) it was really important that it didn’t do anything
stupid and allowed them to optimize it to death. Since it was difficult to explain to them how it did things, and it
did constrain them in meaningful ways, they didn’t buy into it (and rightly so). Basically, SDS traded ease of use for
understanding, a tradeoff which was it’s undoing.

PyDO is meant as a way to give ultimate control to the database people (if they want it) when it comes to database
access and still be relatively easy to use, but not as easy as SDS was.

PyDO is also easy to configure, easy to see what goes on under the hood and extremely lightweight (the PyDO.py file
comes in currently at 616 lines of not-very-dense code). Because the mapping is quite thin, it is easy to explain how
the mythical python expression:

SomeObject.getUnique(FOO=3)

would yield the SQL query (when using the oracle driver)

SELECT COL1, COL2, COL3, FOO from TABLE where FOO = :p1

with :p1 being bound to the integer 3 given it’s definition.

Not only that, but you can override the way fetches and/or mutations are done so that they don’t necessarily even
yeild SQL queries, in the case that you want to do stored procedure access. In general, if you want to go direct to the
database connection level to do something, you can, and PyDO doesn’t care, very much unlike SDS which potentially
could get very confused.

PyDO has no notion of a relation. Relations are handled by the PyDO data developer by using methods. For example,
if you have a Users class and a Groups class, one would likely write a getGroups() method on the Users object to fetch
the Groups object associated with it. PyDO does however provide convience functions to make implementing relations
simpler, specifically joinTable and joinTableSQL methods which make many-to-many relations easier. One-to-one and
one-to-many are are typically done making calls to getUnique() and getSome() methods on the target class.

Unlike SDS, PyDO can also use more than one connection at a time. Each data class defines a connection alias, which
maps to a PyDO connection string which subsequently maps to a database interface instance (specific to the database
type). The connection alias feature exists because you don’t want to have to change all the connect strings in your code
to move them from the development environment to the production environment, you just have to change the connect
string that the alias points to.

1

2

CHAPTER

TWO

How to Define a Data Class

To define a PyDO data class, the first thing to do is inherit from the PyDO base class. From there, you define a series
of class attributes to configure the object.

The connectionAlias attribute specifies the connection alias mentioned above to determine which connection to use.

The table attribute specifies what database table this object maps to. Multiple dataclasses may point at the same
database table.

The fields attribute is a tuple of two-tuples of column name (or field name)/database type. The case of the field name
is significant. For all intents and purposes, use upper case unless the documentation for your database driver says
otherwise (none of them currently do, or even have docs either for that matter). If you have multiple data classes
pointing at the same database table, they need not specify the same field tuples (they can though).

Data class instances are mutable unless you say mutable = 0 in the definition of your data class.

If you would like for fields in rows to be populated with values from sequences (on databases that have named se-
quences, i.e. oracle) when creating new rows, this can be done by specifying the sequenced attribute as a dictionary of
fieldname:sequence name pairs.

If you would like to fetch fields that are populated via the auto-increment feature of your database (if it has one,
like MySQL, oracle doesn’t) on insert, this can be done by specifying the auto increment attribute as a dictionary of
fieldname:autoincname pairs. In the case that autoincrement field fetches aren’t named (i.e. MySQL), just specify 1
as the autoincname, and beware then that you can have only one item in the dictionary.

For some methods (i.e. getUnique, delete, refresh, etc.) that PyDO has, it requires that it be able to obtain
a unique row given a set of column names/values. The way to specify this is to set the unique attribute on your data
class to a list of strings or tuples of strings (can mix and match) that identify that either this column (in the case of a
string) or this set of columns (tuple of strings) uniquely identifies a row.

Other attributes defined in a data class definition are ignored and will not be present in the actual class.

If you want to add attributes into a data class instance, define the init method (it will have no argument other
than self) and it can define whatever other instance attributes it likes, although redefining data class attributes will
have undefined behavior (it might work *shrug*).

2.1 Methods

PyDO, like SDS supports methods. Unlike SDS, though PyDO also has the notion of static methods, methods that
apply to the data class and not an instance of the data class.

Defining a method is the same as defining regular python methods and needs no explanation.

Defining a static method is merely a matter of defining the method with static prepended to the method name. In
which case, the self argument points to the data class and not the data class instance.

3

As you would expect, calling self.method() where method is static is the same as calling
SelfsClass.method().

If you want to get a hold of the static method to be able to call it from, say, a static method in the a subclass and have
it be executed in the class context of the subclass (not the superclass), use the full self.static method() form
(static prepended to the static method name).

2.2 Inheritance

Inheritance is supported, albeit in a somewhat limited way. Methods (instance and static) are inherited as you would
expect. Fields in a super class will be inherited into the subclass, where you can augment the fields tuple or change
the database type (by specifying the field, but with a different database type). This second form may or may not
be supported in future releases. The unique is inherited, but setting it will override, not augment, the super class’
definition. Inheriting from multiple PyDO classes is undefined as to the real behavior. It may work, but no guarantees.

4 Chapter 2. How to Define a Data Class

CHAPTER

THREE

The Details

3.1 Connect Strings

When calling PyDO.PyDBI.DBIInitAlias, you have to specify a connect string. If you are using PyDO from
within the SkunkWeb server, use the caching versions of the connect strings so that connections get rolled back
properly in the event of an error. Obviously, if you dont have the pylib modules required for the caching versions, use
the direct methods.

For Oracle, they take one of two forms (either can optionally have |verbose appended to them to log the sql executed
by the connection):

pydo:oracle:user|cache uses the connection caching of the Oracle pylib that is used by the oracle
SkunkWeb service.

pydo:oracle:user/pw@host use the DCOracle module directly.

For PostgreSQL, they also take one of two forms (either can optionally have :verbose appended to them to log the
sql executed by the connection):

pydo:postgresql:user:cache uses the connection caching of the PostgreSql pylib that is used by the
postgresql SkunkWeb service.

pydo:postgresql:normal postgresql connstr use the pgdb module directly. In addition, if, in lieu
of the host portion of the normal PostgreSQL connection string you put host|port instead, it will connect to
the database listening on the port port instead of the default port.

For MySQL, they can take one of a few forms:

pydo:mysql:normal mysql connect string use the MySQL module directly. To use a cached con-
nection (maintained by the mysql SkunkWeb Service, just use pydo:mysql:::::namewhere name is the
connection name from the MySQLConnectParams configuration variable in sw.conf.

3.2 Inheritance

All base class fields (columns) are inherited, subclasses can add fields and can only change inherited field types.

The unique and connectionAlias attributes are inherited from left most, depth first class which defines them.

Static methods are inherited as static methods.

Instance methods are inherited as instance methods.

5

PyDO classes cannot inherit from non-PyDO classes.

The instantiable, sequenced and auto increment attributes are not inherited.

3.3 Data Class Details

To be instantiable, class must define (or inherit) the connectionAlias, table and fields attributes, or, can set the
instantiable attribute to 1. The overridability is there so, in the case where you have your own fetching mechanisms

(i.e. stored procs), you can make the object instantiable even though it normally wouldn’t be (since no table for
instance).

The fields member is tuple of (columnname, dbtype) pairs. The unique attribute is a list of strings and/or tuple of
strings. If a string, this says that this field is unique in the table, if a tuple, this says these fields taken together are
unique in the table.

You can make the dataclass instances immutable by defining the mutable attribute as a false value (None, 0, empty
string, etc.)

For databases with named sequences, you can populate the value of an field by defining the sequenced member as a
dict of

�
fieldname: sequence name � pairs, whereby if, on a call to new(), the fields specified in sequenced

are not present, the values are fetched from the sequence(s) before insert and subsequently inserted.

For databases with auto-increment fields, you can populate the value of an field by defining the auto increment
member with a dict of

�
fieldname: auto increment name � pairs and the values will be populated into

the object after the insert is executed. In the case of MySQL, there can only be one auto-increment field per table, so
the auto increment name is needed, but it’s value is irrelevant.

To define a static method (one that applies to the dataclass) define the method as

def static realmethodname

Others are instance methods.

To get an unbound instance method, get data class.instance method, to get a static method, unbound from it’s original
data class (presumably called from a sub-data-classe), use data class.static static method name.

Attributes (static methods, data members, etc.) on data classes are accessible from instances.

3.3.1 Data Class Attributes

klass name of the data class

baseClasses tuple of super classes

staticMethods dict of static methods

instanceMethods dict of instance methods

rootClass is the PyDOBase root class metaclass instance

instantiable is this instantiable

connectionAlias connection alias string

table string naming the table

mutable are instances of this mutable?

fieldDict the dict of columnname: dbtype

unique list of candidate keys

6 Chapter 3. The Details

sequenced dict of attrname: seq name

auto increment dict of attrname: auto increment name

3.3.2 Data Class Instance Attributes

dataClass the class which I’m an instance of

dict dict of current row

3.3.3 Static Methods

getDBI() gets database interface (see conn.readme)

getColumns(qualified= None) get column names (with table name if qualified)

getTable() get table name

baseSelect(qualified = None) get SELECT fragment to get rows of object

matchUnique(kw) returns an eligible candidate key based on contents of dict

uniqueWhere(conn, kw) generate a where clause from output of matchUnique

getUnique(**kw) get a unique obj based on keyword args

getSome(**kw) get some objs based on keyword args

getSomeSQL(**kw) given the attribute/value pairs in kw, return sql statement, values to be used in a call to
conn.execute. If kw is empty, the WHERE text in the sql statement will still be preseverved. Basically
useful for constructing ad-hoc queries on a table.

getSomeWhere(*args, **kw) Allows you to use the operator objects in PyDO.operators to be able to
use sql operators other than the implicit AND as used by the other static get methods. The **kw argument is
the same as the other static get methods. The *args argument however allows you to combine operators to do
operations like OR, NOT, LIKE, etc. For example, the following would get all rows where the last name field
was LIKE Ingers%.

obj.getSomeWhere(LIKE(FIELD(’last_name’), (’Ingers%’)))

The complete list of operators is in (see section 5, page 19).

getTupleWhere(opTuple, **kw) Allows you to use a somewhat Lispish notation for generating SQL
queries, like so:

obj.getTupleWhere((’OR’,
(’LIKE’, FIELD(’last_name’), ’Ingers%’),
(’OR’, (’<>’, FIELD(’id’), 355),

(’=’, FIELD(’id’), 356))))

Strings are used to represent operators rather than the SQLOperator class wrappers used in getSomeWhere(),
but the FIELD and SET classes are still useful. The kw argument is treated the same as in getSome() and
getSomeWhere().

getSQLWhere(sql, values=()) executes a sql statement to fetch the object type where you supply the
where clause (without the WHERE keyword) and values in the case that you bind variables.

3.3. Data Class Details 7

scatterFetchSQL(objlist) do a scatter fetch (a select from more than one table) based on the relation
information in objs which is of the form:

[
(object, attributes, destinationObject, destinationAttributes),
(object, attributes, destinationObject, destinationAttributes)

]

This basically states that objects attributes are a foreign key to destinationObject’s destinationAttributes.

For example, if you have User and UserResidence classes, a scatter fetch may be simply:

userObj.scatterFetchSQL([(UserResidence, ’USER_OID’, User, ’OID’)])

which if executed would return a list of tuples of: (userObj, userResObj) where userObj.[’OID’] ==
userResObj[’USER OID’]

This function returns sql, baseColumnNames, and a modified version of the objs argument.

scatterFetchPost(objs, sql, vals, cols) handle the execution and processing of a scatter fetch
to produce a result list – returns the list of tuples referred to in the docstring of scatterFetchSQL.

scatterFetch(objs, **kw) see scatterFetchSQL for format of objs and getSome for format of
**kw.

new(refetch = None, **kw) get new object based on kw args, if refetch is true, refetch obj after insert

validateFields(dict) does simple validation of fields on insert

commit() causes the database connection of this object to commit.

rollback() causes the database connection of this object to roll back.

3.3.4 Instance Methods

init () can be used to prepopulate data object instance attributes. Can have no arguments other than self.

dict() returns copy of dict representing current row

updateValues(dict) make the values in current dict ”stick”

delete() delete current row

refresh() reload current object

joinTable(thisAttrNames, pivotTable, thisSideColumns, thatSideColumns, thatObject, thatAttrNames)
do cool m2m join

joinTableSQL(thisAttrNames, pivotTable, thisSideColumns, thatSideColumns, thatObject, thatAttrNames)
returns sql and value list for conn.execute to do a m2m join but doesn’t execute it so you can do
ordering or other stuff.

8 Chapter 3. The Details

3.3.5 Dict-type Instance Methods

PyDO objects also obey a good majority of the dictionary interface. They are:

__getitem__(item)
__setitem__(item, val)
items()
copy()
has_key(key)
key()
values()
get(item, default = None)
update(dict)

3.3. Data Class Details 9

10

CHAPTER

FOUR

The Big Example

An Oracle example:

Ok, for starters you’ve got a simple users table:

CREATE TABLE USERS (
OID NUMBER,
USERNAME VARCHAR(16),
PASSWORD VARCHAR(16),
CREATED DATE,
LAST_MOD DATE

);

And a sequencer for the OID:

CREATE SEQUENCE USERS_OID_SEQ;

And you want to do stuff with it using PyDO.

from PyDO import *
DBIInitAlias(’drew’, ’pydo:oracle:drew/drew@drew’)
class Users(PyDO):

connectionAlias = ’drew’
table = ’USERS’
fields = (

(’OID’ , ’NUMBER’),
(’USERNAME’, ’VARCHAR(16)’),
(’PASSWORD’, ’VARCHAR(16)’),
(’CREATED’ , ’DATE’),
(’LAST_MOD’, ’DATE’)
)

sequenced = {
’OID’: ’USERS_OID_SEQ’
}

unique = [’OID’, ’USERNAME’]

Ok, line-by-line, this is what this all means:

11

> from PyDO import *

Import the contents of PyDO into your module namespace. PyDO is pretty clean and shouldn’t pollute the namespace
significantly as it was designed to be imported this way, but if that irks you, doing a regular import PyDO will also
work (but you’ll need to adequately qualify things, obviously).

> DBIInitAlias(’drew’, ’pydo:oracle:drew/drew@drew’)

PyDO has a database driver library thingy. It’s not really meant for use outside of PyDO, but you can use it if you like,
it’s mainly there so the main PyDO code doesn’t have to care so much about the underlying database so much in terms
of things like: whether it support bind variables or not and etc.

The arguments to DBIInitAlias are: a connection alias name (used as connectionAlias in your data classes), and
a PyDO connect string. For oracle, the connect strings are of the form pydo:oracle:user/password@inst.

> class Users(PyDO):

All dataclasses inherit directly or indirectly from the PyDO base class.

> connectionAlias = ’drew’

Used to select the database connection to use for this object. You can have more than one connection going at a time,
so you need to choose one (presumably the one that has the table you’re going to use). In this case we’re going to use
the alias that we initialized previously.

> table = ’USERS’

PyDO needs to know what table the rows will be coming from if it’s going to do anything, so we point it at the
previously created USERS table.

> fields = (
> (’OID’ , ’NUMBER’),
> (’USERNAME’, ’VARCHAR(16)’),
> (’PASSWORD’, ’VARCHAR(16)’),
> (’CREATED’ , ’DATE’),
> (’LAST_MOD’, ’DATE’)
>)

What you need to do here is associate the column names from the table to their database type. The case of the column
names *must* be the same as the native case of the database for such things (specifically, the same case as what the
database driver returns on a describe of a query). For most databases, this is uppercase, same for the database type.

> sequenced = {
> ’OID’: ’USERS_OID_SEQ’
> }

12 Chapter 4. The Big Example

This says, if on a call to new() (described later), OID is not specified, then fetch it from the sequence here named.

> unique = [’OID’, ’USERNAME’]

This is a list of candidate keys — columns that uniquely identify a row.

4.1 Using This New Data Class

Assuming the aforecreated USERS table is empty, we need to put some something in it before we start.

newUser = Users.new(USERNAME = ’drew’, PASSWORD = ’foo’, CREATED = SYSDATE,
LAST_MOD = SYSDATE)

The new method inserts a new row into the table. There is an optional parameter, refetch which effectively calls
the refresh method (described below). This is useful in the case where you have a table with default values for
columns and you want to make references to the values with the defaults in place.

What this will do is: fetch a new OID from USERS OID SEQ since OID wasn’t specified above, and subsequently
insert a new row into the USERS table with the OID and the values specified in the call to new().

As you will notice, SYSDATE is a variable that translates to the databases’ idea of the current date (and time).

Now that we have a Users instance, we can examine it a bit more closely. PyDO subclass instances observe the python
dictionary interface.

For example:

>>> newUser[’USERNAME’]
’drew’
>>> newUser[’OID’]
1
>>> newUser.keys()
(’OID’, ’USERNAME’, ’PASSWORD’, ’CREATED’, ’LAST_MOD’)

4.2 Mutating Data Class Instances

If you don’t want your data class instances to be mutable (for whatever reason), assign 1 to the mutable attribute in
your class definition.

To mutate an object, you use the dictionary-style mutation interface. For example, to change the value of USERNAME
in the current row:

>>> newUser[’USERNAME’] = ’fred’

What this will do is cause the following UPDATE query to be sent to the connection.

UPDATE USERS SET USERNAME = :p1 WHERE OID = :p2

4.1. Using This New Data Class 13

(bind variables :p1 = ’fred’ and :p2 = 1)

One might ask: ”how the hell did that happen?” The answer is this: it got the table from the table specified in the data
class description

> table = ’USERS’

The attribute name is the item you assigned to. The OID = :p2 part is a bit more interesting. If you look above,
you’ll see:

> unique = [’OID’, ’USERNAME’]

What PyDO does is this: it loops over the unique list and for each item in the list is determines if it is a tuple or string.
If it’s a string, it’s the name of an field that uniquely identifies a row in the table (here ’OID’). If the current object
has that key-value pair, it stops having found an identifying field and so composes the where clause. If it is a tuple,
it is a set of fields that uniquely identify the row. If all such fields are populated in the current object, it will stop and
compose the where clause from the ANDing check of those fields in the current object. In the case where either there
is no unique line specified or the key-value pairs aren’t defined in the current object, an exception saying ”No way to
get unique row!” will be raised.

Ideally, if you want to update more than one field in your object in one UPDATE query, you can use the update
method (from the dictionary interface) to accomplish this.

> newUser.update({’USERNAME’: ’barney’, PASSWORD=’iF0rG0t’})

This will update both column values in one UPDATE query.

You might now say, well, that’s all fine an dandy, but to do this correctly, I want to make sure that the LAST MOD field
gets updated appropriately when people change the object! Well, be at rest, we can do that too. Behind the scenes, the
getitem and update methods call an instance method updateValues that actually does the hard work and we

can override this to update LAST MOD as appropriate.

4.3 Defining Instance Methods

If we add the following method to the Users class definition, this will do the trick:

def updateValues(self, dict):
if not dict.has_key[’LAST_MOD’]:

dict = dict.copy()
dict[’LAST_MOD’] = SYSDATE

return PyDO.updateValues(self, dict)

All it does is say, if they didn’t specify a value for LAST MOD (we assume here that if they specified it, they did for
good reason), we make a copy of the dict (in the case that they still hold a reference to it, we don’t want to screw it up)
and set LAST MOD to SYSDATE, and subsequently call our baseclasses version of updateValues.

This brings us to methods, of which there are two flavors, static and instance. Python itself doesn’t have the notion of
static methods, but for certain applications (specifically PyDO), they can be made available and incredibly useful.

To create a regular method, just write it as if everything was normal in python land. Nothing big to mention here. It

14 Chapter 4. The Big Example

will apply to instances of data classes and you can get an unbound verion by saying class.method just as in regular
Python.

4.4 Defining Static Methods

For static methods, you define your method as such:

def static mymethodname(self, ...whatever...):

The static prefix says ”this is a static method”. The self argument will point to the data class itself, not an
instance of the dataclass. In the case that you want to call a super classes static method on the current subclass, and in
the context of the subclass, you say:

fooresult = MySuperClass.static_barmethod(self, baz, fred, barney)

This is useful when you are overloading a static method in a subclass but still want to call the superclass version (such
as new). This is very much unlike Java, which disallows this. (don’t know about C++)

Your newly-defined method can then be called as

SomeClass.mymethodname(...whatever...) without the static prefix to call the method statically. For example,
the call to the new method on the Users object towards the beginning of this document is a static call (it’s defined as
static new in the PyDO base class).

NOTE: you cannot override a static method with an instance method or vice versa.

Why this is useful is this: You want to make it so that you don’t have to specify the CREATED and LAST MOD fields
when making a call to new since the caller shouldn’t really have to care and it can be taken care of automatically. You
can, if you want to, enforce what fields they can or must set on a call to new. For example: setting the CREATED and
LAST MOD automatically and enforcing that USERNAME and PASSWORD only are specified.

def static_new(self, refetch = None, USERNAME, PASSWORD):
return PyDO.static_new(self, refetch, USERNAME=USERNAME,

PASSWORD=PASSWORD, CREATED=SYSDATE,
LAST_MOD=SYSDATE)

MAKE SURE TO USE THE STATIC UNBOUND VERSION WHEN CALLING YOUR SUPERCLASS OR THE
WRONG THINGS WILL LIKELY HAPPEN!

In the cases where PyDO is not your direct superclass, you might call your superclass’ static new method instead.
On the other hand, you may want to handle the new method entirely yourself.

4.5 Relations and PyDO

The way you do relations with PyDO is with methods. For example, if we had a Files class which had an field
OWNER ID which was a foreign key to the USERS table, we could write a method for the Users object like this (a
one to many relation):

def getFiles(self):
return Files.getSome(OWNER_ID = self[’OID’])

4.4. Defining Static Methods 15

The getSome static method, given fields in the object will generate a where clause with those fields and return a list
of objects, each of which representing one row.

If Users had an One to One relationship with Residence, we could write a method to get it (presuming
Residence, again has a foreign key to the USERS table in a column/field named OWNER ID):

def getResidence(self):
return Residences.getUnique(OWNER_ID = self[’OID’])

The getUnique static method is similar to getSome except that it will return only one row or None. It uses the
unique attribute (here on the Residences object) to determine how to get a unique row. If you don’t specify any
identifying rows, it will raise an exception saying ”No way to get a unique row”, or in the case that it mysteriously
finds more than one row, will raise a similar exception.

To do Many To Many relations, things are a bit more interesting. Since there may or may not be an object that
represents the pivot table (or linkage table) that links the two tables together, and you probably wouldn’t want to do
the work to traverse all of them anyhow, there is a joinTable method which simplifies the work.

Say there is a Groups entity and a table USERS TO GROUPS which is the pivot table and has two columns,
USER ID and GROUP ID (foriegn keyed as appropriate). You’d write a method getGroups as such:

def getGroups(self):
return self.joinTable(’OID’, ’USERS_TO_GROUPS’, ’USER_ID’,

’GROUP_ID’, Groups, ’OID’)

What this will do is do the join across the USERS TO GROUPS table to the table that the Groups object corresponds
to. The parameters (matched up to the arguments supplied above) are:

thisAttributeNames ’OID’ attribute(s) in current object to join from

pivotTable ’USERS TO GROUPS’ pivot table name

thisSideColumns ’USER ID’ column(s) that correspond to the foriegn key column to
myAttributeName.

thatSideColumns ’GROUP ID’ column(s) that correspond to the foriegn key column to
thatAttributeName.

thatObject Groups the destination object.

thatAttributeNames ’OID’ see thatSideColumns.

If in the case you want to do things like ordering and such on a many to many relation, you can use the
joinTableSQL function (takes the same arguments) to get the sql and value list to use. From there you can add
to the generated sql statement things like ORDER BY FOOTABLE.BAZCOLUMN and such. From there you use the
dbi’s execute function to execute the query and subsequently construct the objects.

4.6 Refreshing an Object

Ok, we’ve learned that the information in the current row has been altered (by nefarious means - mwahahahah! or
not) in the database, but we still hold the old information. By calling the refresh() method, it effectively does a
getUnique on itself and refreshes it’s contents. If the object no longer exists, it raises an appropriate error.

16 Chapter 4. The Big Example

4.7 Deleting An object

We’re now done with this user object and want to dispose of it from the database. Using the delete method it issues
an appropriate DELETE query to the database. Since it needs a unique row, the usual things related to uniqueness
mentioned above apply.

4.8 Committing and Rollback

Each PyDO object contains the two methods commit() and rollback(). These, in turn call the corresponding
methods on their database connection. Normally there is little room for confusion, but in the case of using multiple
database connections simultaneously, this could be a bit more confusing on what exactly is getting committed.

4.7. Deleting An object 17

18

CHAPTER

FIVE

Operators

The PyDO.operators module consists of support code to let you do more with the getSomeWhere and
getTupleWhere static methods of PyDO objects. These are no more than SQL-generating routines, and hence
fall into the category of syntactic sugar, but they can be convenient in some circumstances.

The below are SQLOperator subclasses for use with the getSomeWhere method:

NOT takes one argument, the item to negate.

EQ takes two arguments, the items to compare for equality.

NE takes two arguments, the items to compare for inequality.

LT takes two arguments, the items to compare for less than.

LT EQ takes two arguments, the items to compare for less than or equal to.

GT takes two arguments, the items to compare for greater than.

GT EQ takes two arguments, the items to compare for greater than or equal to.

LIKE takes two arguments, the first a FIELDand the second, a string that is the LIKE matcher.

IN takes two arguments, the first a FIELD, and the second, a SET constructed with the items that should be
checked for membership. In short, the SQL IN operator.

AND Takes two arguments, two sub expressions to logically and.

OR Takes two arguments, two sub expressions to logically or.

PLUS, MINUS, MULT, DIV Takes two arguments, both of them either numerical constants or a FIELD. The
values will be mathematically operated on as appropriate.

Two other classes exist to control the escaping of SQL output. The FIELD class is used to indicate that a given string
is not a string literal, but the name of a database column. The SET class is used to generate a properly formatted list
of things to use as the second argument of the IN operator.

getTupleWhere does not use thes SQLOperator subclasses, but directly inserts the operator strings provided by the
user into the generated SQL. The FIELD and SET classes are still needed, however.

19

20

CHAPTER

SIX

The *Genscripts

In the PyDO distribution, there are a number of scripts called somethinggenscript.py. What these scripts do, is
login to the database, and ask the database about the schema (read as: grovel over the system catalogs), and ask the
user (that is, you) a few questions about what it finds, and what to call things. Then, they output a python module
containing premade PyDO classes that contain the knowledge of the schema it produced. Currently genscripts exist
for Oracle (ogenscript.py, PostgreSQL pgenscript.py and SAPDB sabdbgenscript. They are a great
way to automate something that would otherwise be tedious (at least) and errorprone. Not only that, but occasionally,
you wind up discovering relations in your schema that you werent aware of.

In order for these tools to be able to gather relation information, the appropriate referential integrity constraints must
be in place.

21

22

CHAPTER

SEVEN

Adding Support for Another Database

If you wish to add support for another database that is currently not supported, you have to implement a class that
follows the following interface:

class interface:
"""don’t actually inherit from me, this is just for documentation
purposes"""
def __init__(self, dbconnstr):

"""the dbconnstr is the conn str with the pydo:dbkind: bit
chopped off"""

self.bindVariables = 1 | 0 # 1 - I support bind variables, 0 - I don’t
pass

def getConnection(self):
"""Get the actual database connection"""
pass

def bindVariable(self):
"""if you support bindVariables, return next bind variable name.
suitable for direct inclusion into a sql query"""

def sqlStringAndValue(self, val, attributeName, dbtype):
"""Returns a sql string and a value. The literal is to be put into
the sql query, the value should is put into the value list that is
subsequently passed to execute().

The reason for this is for example, using bind variables in the
generated sql, you want to return a bind variable string and the
value to be passed. If doing such things requires state, you can
clear it in resetQuery().

"""
return "LITERAL", val

def execute(self, sql, values, attributes):
"""Executes the statement with the values and does conversion
of the return result as necessary.

result is list of dictionaries, or number of rows affected"""

23

def convertResultRows(self, columnNames, attributeKinds, rows):
"""converts the result list into a list of dictionaries keyed
by column name, and data type conversion specified by the
attributeKinds dictionary (keyed by attribute, valued by database
datatype).
"""

def resetQuery(self):
"""Reset things like bind variable numbers if necessary before a query
Need only if there is state between sqlLiterals because of bind
variables, otherwise, don’t need this. Called before a query is
executed.
"""

def getSequence(self, name):
"""If db has sequences, this should return the sequence named name"""
return 1

def getAutoIncrement(self, name):
"""if things like mysql where can get the sequence after the insert"""
return 1

def typeCheckAndConvert(self, value, attributeName, attrDbType):
"""check values type to see that it is valid and subsequently
do any conversion to value necessary to talk to the database with
it, i.e. mxDateTime to database date representation"""

def postInsertUpdate(self, PyDOObject, dict, isInsert):
"""to do anything needed after an insert or update of the values
into table. Specifically to handle cases like blobs where you
insert/update with a new blob, but have to select for update and
then deal with the blob post factum

PyDOObject is the object being affected
Dict is the dict of new values
isInsert is a boolean stating whether or not this is an insert (true)

or an update (false).
"""

Once that is done, an appropriate change to the driverConfig dictionary in the PyDBI.py file.

24 Chapter 7. Adding Support for Another Database

